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ABSTRACT 

Classes of integer ABS algorithms have been introduced for solving linear 

Diophantine equations. The algorithms are powerful methods for developing all 

matrix factorizations. Here, we provide the conditions for the existence of the integer 

WZ and ZW factorizations of an integer matrix. Then, we present algorithms based 

on the integer ABS algorithms for computing the integer WZ and ZW factorizations of 

an integer matrix as well as the integer XZZT
  and XWW

T

 factorizations of a 

totally  unimodular symmetric positives definite matrix.  

 

Keywords: ABS algorithm, Unimodular matrix, Integer factorization, WZ 

factorization,  X  factorization. 

 

 

1. INTRODUCTION 

 Implicit matrix elimination schemes for the solution of linear 

systems were introduced by Evans(1993) and Evans and Hatzopoulos 

(1979). These schemes propose the elimination of two matrix elements 

simultaneously (as opposed to a single element in Gaussian Elimination) 

and is eminently suitable for parallel implementation (Evansand Abdullah 

(1994)). 

 

ABS class of algorithms was constructed for the solution of linear 

systems Ax = b utilizing some basic ideas such as projection and rank one 

update techniques (Abaffy and Broyden (1984); Abaffy and Spedicato 

(1989)).The ABS class later extended to solve optimization problems 

(Abaffy and Spedicato (1989)) and systems of linear Diaphantine equations 

(see Esmaeili et al. (2001); Khorramizadeh and Mahdavi-Amiri (2009); 

Khorramizadeh and Mahdavi-Amiri (2008)). A scaled version of the linear 
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ABS class was described in Abaffy and Spedicato (1989). Reviews of ABS 

methods can be found in Spedicato et al. (2003) and Spedicato et al. (2010). 

 

A basic ABS algorithm starts with a nonsingular matrix 1

n n
H R

×∈  

(Spedicato’s parameter), as a basis for the null space corresponding to the 

empty coefficient matrix (no equations). Given the Abaffian matrix 1H  

with rows generating the null space of the first 1i −  equations, the ABS 

algorithm computes 1iH +  as a null space generator of the first i  equations. 

Consider the following linear system, 

 

                       , , ,n n n n
Ax b x R A R b R

×= ∈ ∈ ∈                         (1) 

 

where rank(A) is arbitrary. Obviously, the system (1) is equivalent to the 

following scaled system, 

 

                                             ,T T
V Ax V b=                                         (2) 

 

where V, the scale matrix, is an arbitrary nonsingular n n× matrix. 

 

Let 
T

ia be the ith row of A. A tailored scaled ABS algorithm as applied to A 

can be described as follows, where the output variable r gives the rank of A. 

 

Algorithm 1.The scaled ABS (SABS) algorithm. 

Step1: Let 1

n n
H R

×∈ be arbitrary and nonsingular and 1

n
v R∈  be an arbitrary 

nonzero vector. Set 1i =  and 0.r =  

 

Step2: Compute .i
T

ii vAHs =  

 

Step3: If 0=is  
then set 

ii HH =+1  
and go to Step 5 (the ith row is dependent 

on the first  1−i
 
rows). 

 

Step4:{ 0}
i

s ≠  compute ,T

i i ip H f=  where 1

n
f R∈  (Broyden’s parameter), is 

an arbitrary vector satisfying 0T

i is f ≠  and update
i

H   by 

 

  
1 ,

T T

i i i i

i i T T

i i i

H A vq H
H H

q H A v
+ = −

                                              

(3) 
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where n

iq R∈   (Abaffy’s parameter) is an arbitrary vector satisfying

0.T

i is q ≠  Let 1.r r= +  

 

Step5: If i n= then Stop (columns of 1

T

iH +  generates the null space of A) else 

define 1 ,n

iv R+ ∈  an arbitrary vector linearly independent of , , ,
i i

v v… let

1i i= + and go to Step 2. 

 

The matrices
i

H  are generalizations of projections matrices and have been 

named Abaffians since the First International Conference on ABS Methods 

(Luyoyang (1991)). They probably first appeared in a book by Wedderburn 
(1934). 

 
An important result of the ABS algorithms is the establishment of an 
implicit matrix factorization 

 

,TV AP L=                                                    (4) 

  

Where L is a lower triangular matrix (see Abaffy and Spedicato (1989)). 
 

Choices of the parameters
ii fvH ,,1
 and

i
q  determine particular methods 

within the class. The basic ABS class is obtained by taking 
i i

v e= (Abaffy 

and Spedicato (1989)), the ith unit vector in .n
R  

 

All matrix factorizations can be produced by using the scaled ABS 

algorithm with proper definitions of the parameters  (Galantai (2001)). 

 

From (Abaffy and Spedicato (1989)) we recall some properties of the Basic 

ABS algorithms for LU factorization. 

 

P1. The implicit LU algorithm is defined by the following choices, which 

are well defined if A is regular (all leading principal submatrices are 

nonsingular) 

 

1 ,H I=
1 , .

T

Ti i i i

i i i i iT

i i i

H ae H
H H p H e

e H a
+ = − =

                                 

(5) 
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P2. Let IH =1
, then 

ii

T

ii aHe=δ  satisfies 

 

1 1,1,aδ =
 

,

1, 1

det( )
, 1,

det( )

i i

i i i

A
i

A
δ

− −
= >

                                 

(6) 

 

where
iiA ,
is the ith leading principal submatrix of A. 

 

P3. Let the conditions of P1 be satisfied. Then, the following properties 

hold: 

 

(a) The first i rows of 1+iH are identically zero. 

 

(b)  The last n − i column of 1+iH is equal to the last n − i  column of 
1.H  

 

The block ABS algorithm, is due to Abaffy and Galantai (1986) for the 

scaled ABS class, and further developed in several papers by Galantai(2001, 

2003, 2004), is a block form of the ABS algorithm (Abaffy and Spedicato 

(1989)). 

 

Let A be full rank row and 1,..., sn n be positive integer numbers so that 

1 ... .sn n n+ + =  Assume that nonsingular matrix V is partitioned by ],...,[ 1 sVVV =

where inn

i RV
×

∈ . The block scale ABS algorithm is as follows. 

 

(1)  Determine in n

iF R
×

∈ such that T T

i i iF H A V is nonsingular and set 
T

i i iP H F=  

 

(2)  Update the Abaffian matrix
i

H  by 

 

,)(
1

1 i

T

ii

T

i

T

ii

T

iii HQVAHQVAHHH
−

+ −=                                     (7) 

 

where in n

iQ R
×∈ is an arbitrary matrix so that 

T T

i i iQ H A V is nonsingular. 
 

The remainder of our work is organized as follows. In Section 2, we discuss 

the integer ABS class of algorithms. In Section 3, we present an existence 

condition for the integer WZ factorization. Then, we present an algorithm 

for computing the integer WZ factorization as well as the XZZT  factorization 

of a totally unimodular symmetric positive definite matrix using the block 

integer ABS algorithm. In Section 4, we compute the integer ZW 

factorization by appropriately setting the parameters of the block integer 
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ABS algorithm. We also compute the integer XWW
T   factorization of a 

totally unimodular symmetric positive definite matrix. An existence 

condition for the integer ZW factorization based on the integer ABS 

algorithm is given. Section 5 illustrates an example for computing the ZW 

factorization. Concluding remarks are given in Section 6. 

 

2. INTEGER ABS  ALGORITHM 

The integer ABS (IABS) class algorithms for linear Diophantine 

equations presented by Esmaeili et al.(2001) to compute the general integer 

solution of linear Diophantine equations. Conditions for the existence of an 

integer solution and determination of all integer solutions of a linear 

Diophantine system are given in Esmaeili et al. (2001). 

 

First we recall some results from number theory and then present the IABS 

algorithm. 

 

Definition 2.1.
nn

RA
×∈ is a unimodular matrix iff 1)det( =A . 

 

If A is unimodular, then 
1−

A is also unimodular. 

 

Definition 2.2.A matrix A is called totally unimodular if each square 

submatrix of A has determinant equal to 0, +1, or -1. In particular, each 

entry of a totally unimodular matrix is 0, +1, or -1. 

 

Theorem 2.1.(Fundamental theorem of the single linear 

Diophantine equation). 

 

Let 1,..., na a and b be integer numbers. The Diophantine linear 

equation 
1 1 ... n nax a x b+ + =  has an integer solution if and only if       

gcd 1( ,..., ) |na a b  (if 1,n > then there are an infinite number of integer 

solutions). 

 
Proof. See Pohst (1993). 

 

The integer ABS algorithm (IABS) has the following structure, with gcd( )u  

the greatest common divisor of a vector u. 
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Algorithm 2.The integer ABS (IABS) algorithm. 

Step1: Let 1

n n
H Z

×∈ be arbitrary and unimodular matrix. Set 1i = and 0.r =  

 

Step2: Compute 1 .T

i is H A v=  

 

Step3: If 0
i

s =  then set 
1i iH H+ = and go to Step 5 (the ith row is dependent 

on the first 1i = rows). 

 

Step4:{ 0}
i

s ≠ compute
  iis δ=)gcd( and ,T

i i ip H f= where n

if Z∈   is an arbitrary 

vector satisfying T

i i is f δ=  and update
i

H   by 

 

                                   
1 ,

T T

i i i i

i i T T

i i i

H A vq H
H H

q H A v
+ = −  

where n

i Zq ∈  is an arbitrary vector satisfying .T

i i is q δ=  Let 1.r r= +  

 

Step5: If i n=  then stop (columns of 1

T

iH+  generates the null space of A) else 

let 1i i= +  and go to Step2. 

 

Let  
n n

V Z
×∈ be a unimodular matrix. Then, the scaled integer ABS algorithm 

is computed by  applying  Algorithm 2 on  
T

V A with 
i

T
vA replacing .

i
a  

 

Theorem 2.2. If all the principal submatrices of A are unimodular, the 

integer LU algorithm is well defined. 

 

Proof. See Corollary 4.1 in Zou and Xia (2005).  

 

Corollary 2.1.If A is totally unimodular of full rank. Then there exists a 

row permutation matrix Π  so that Π ,A LU=  where L and U are integer 

lower and upper triangular matrix respectively. 
 

Corollary 2.2. Every totally uniomodular symmetric positive definite 

matrix has an integer LU factorization. 
 

Furthermore, in a recent work we have shown that a special version of our 

approach constructs the Smith normal form of an integer matrix, being 

utilized in solving linear Diophantine systems of equations (Golpar-Raboky 

and Mahdavi-Amiri (2012)). 
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Next, we compute the integer WZ and the integer WZ factorizations of a 

non-singular integer matrix as well as the XWW
T  and the  XZZT

factorizations of a totally  unimodular symmetric positive definite matrix 

using the integer ABS algorithms. 

 

3. WZ FACTORIZATION USING THE BLOCK SCALED ABS   

ALGORITHM 

The well known LU factorization is one of the most commonly 

used algorithms to solve linear systems and WZ factorization offers an 

interesting variant of the factorization. 

 

To solve a system of linear equations, the WZ factorization 

procedure proposed in Evans (1993a,b) is convenient for parallel 

computing. The WZ factorization offers a parallel method for solving dense 

linear systems, where A is a square n n× matrix, and b is an n-vector. 

 

Definition 3.1. Let s be a real number, and denote by s   ( )s   , the 

greatest (least) integer less (greater) than or equal to s. 

 

Definition 3.2. We say that a matrix A is factorized in an integer WZ (IWZ) 

form if 

,A WZ=                                                    (8) 

 

where the W-matrix and the Z-matrix are integer matrices having following 

structures: 

            ,W

• • 
 
• • • • 
 = • • • • •
 
• • • • 
 • • 

� � �

�

�

� � �

,Z

• • • • • 
 

• • • 
 = •
 

• • • 
 • • • • • 

� �

� � � �

� �

                     (9) 

 

with the empty bullets standing for zero and the other bullets standing for 

possible integer nonzeros. 
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Definition 3.3. We define an X-matrix as follows: 

 

.X

• • 
 

• • 
 = •
 

• • 
 • • 

� � �

� � �

� � � �

� � �

� � �
                                        

 (10) 

 

The following theorems express the conditions for the existence of an 

integer WZ factorization of a unimodular matrix (see Rao (1997)). Later, we 

give a new set of conditions useful for our purposes. 

 

Theorem 3.1. (Factorization Theorem) Let n nA Z ×∈ be unimodular. Then A 

has an integer WZ factorization if and only if for every , 1, ,k k s= … with

,
2

n
s

 
=   

 if n is even and ,
2

n
s

 
=   

if n is odd, the submatrix 

 

                 

1,1 1, 1, 1 1,

,1 , , 1 ,

1,1 1, 1, 1 1,

,1 , , 1 , 2 2

k n k n

k k k k n k k n

k

n k n k k n k n k n k n

n n k n n k n n k k

a a a a

a a a a

a a a a

a a a a

− +

− +

− + − + − + − + − +

− + ×

 
 
 
 

∆ = 
 
 
 
 
 

⋯ ⋯

⋮ ⋯ ⋮ ⋮ ⋯ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋯ ⋮ ⋮ ⋯ ⋮

⋯ ⋯
                   

(11) 

of A is unimodular. 

 

Proof. See Theorem 2 in Rao (1997). 

 

Theorem 3.2. If 
nn

ZA
×∈   is totally unimodular of full rank, then the integer 

WZ and ZW factorizations can always be obtained by pivoting. That is, there 

exists a row permutation matrix Π  and the factors W and Z such that 

 

Π WZA= .                                             (12) 

 

Proof. See Theorem 3 in Rao (1997). 

 

Corollary 3.1. Every totally unimodular symmetric positive definite matrix 

has the integer WZ and ZW factorizations. 
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Now, we present a new interpretation of Theorem 3.1 based on the block 

IABS algorithm with blocksize equal to two. Then, we show how to 

compute the integer WZ factorization using IABS algorithm. 

 

Theorem 3.3. Let 
nnZA ×∈ be unimodular. If k∆ , 1,...,

2

n
k =

 
be unimodular 

then the block scaled IABS algorithm with parameter choices
1 ,H I=

2 1 2 1[ , ] [ , ]i i i i n iV v v e e− − += = and 
2 1 2 1[ , ] [ , ]i i i i n iQ q q e e− − += =  

is well defined  and the implicit 

factorization   APV
T

  with ,, 11 +−+− == in

T

iini

T

ii eHpeHp 1,...,
2

n
i=

 
and 

1

2

[ ,..., ]nV V V=  

leads to an integer WZ factorization.  

 

Proof. Let 
1H I=   and 1i

H + defined by (7). Then, according to property P3, 

we have 

1 2

0 0 0

0 0 0

i i n i i
H K I L+ −

 
 

=  
  

                                    (13) 

 

with
2 ,, .n i i

i iK L Z
−∈  Let ],,[],[ 1212 +−− == ini

T

iiii eeHppP

 

],...,[
2

ni PPP = and

1

2

[ ,..., ].nV V V= Then, the integer block ABS algorithm produce ,LPAVT = where  

L is a block lower triangular matrix. Now, we have 

 

,WZALVVAPLVVVPALPAV TTTTTT =⇒=⇒=⇒= −−

                      (14) 

 

Where  )( TVPP=    is an integer Z-matrix with 1’s on diagonal and 0’s on off 

diagonal and TT
LVVW

−=  is an integer W-matrix. 

 

We observe that the first i rows and the last i rows of 1i
H + are equal zero 

and we delete the rows. In doing this we use of the matrix 
i

E  obtaining 

from 
n

I  by deleting its the first i rows and the last i rows.   

 

Here, we present an algorithm for computing the integer WZ factorization.  
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Algorithm 3.The integer WZ factorization. 

Step 1: Let 1H I= and 1.i =  

Step 2: Let 1[ , ],
i i n i

A a a − +=  
iii AHs =
 
and  

 

1 1[ , ] [ , ].T

i i n i i i n iP p p H e e− + − += =  

 

 

Step 3: Let 1[ , ]
i i n i

Q e e − +=  and .T

i i iF Q S= Construct 
i

E  from 
i

I  by deleting 

its the first i rows and the last i rows. Update 
i

H  by 

 

).)((
1

1

T

iiiiii PFSHEH
−

+ −=  

 

Step 4: Let 1.i i= +  If 
2

n
i ≤ go to Step (2). 

 

Step 5: Compute AP = W, where 
1

[ ,..., ]nP p p= . Stop. 

 

Theorem 3.4. Let A be totally  tunimodular symmetric positive definite. 

Then, there exists  a XZZT   factorization for A, obtained by the ABS 

algorithm. 

 

Proof. Consider the assumptions of Theorem 3.3 and let ,
i i

V P=  for

1, , .i i s= = … Then, 

 

XZZLPVALAPV
TTT ==⇒= −− 1

                            (15) 

 

where X is an X-matrix. 

 

 

4.  ZW FACTORIZATION USING THE BLOCK SCALED ABS 

ALGORITHM 

Now, the integer ZW factorization is presented as an alternative to 

the integer WZ factorization. 

 

Definition 4.1. We say that a matrix A is factorized in the form integer ZW 

if  
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,A ZW=                                          (16) 

 
where the matrices W is an integer W-matrix and Z is an integer Z- matrix. 

 

Theorem 4.1. Let n nA Z ×∈ be unimodular. The matrix A has an integer ZW 

factorization if and only if for every ,k 1,..., ,k s=  with ,
2

n
s
 

=  
 if n is even, and 

,
2

n
s
 

=  
if n is odd, the submatrix 

1, 1 1,

, 1 ,

s k s k s k s k

k

s k s k s k s k

a a

a a

− + − + − + +

+ − + + +

 
 

Λ = 
 
 

⋯

⋮ ⋯ ⋮

⋯
                               

(17) 

of A is unimodular.  

 

Proof. See Theorem 2 in Rao (1997)  replacing i∆  by .
i

Λ  

 

Here, we compute the integer ZW factorization using the block integer ABS 

algorithm. 

 

Theorem 4.2. Let 
nn

ZA
×∈ be unimodular. If ,kΛ 1,...,

2

n
k = be unimodular then 

the block IABS algorithm with parameter choices 
1 ,H I=

2 1 2
1

2 2

[ , ] [ , ]
i i i n n

i i
V v v e e−

− + +
= =  

and 
2 1 2

1
2 2

[ , ] [ , ]i i i n n
i i

Q q q e e−
− + +

= = is well defined and the implicit factorization APV
T

with 
1 1

2 2

,T

n i n
i i

p H e
−+ −+

=
2 2

,T

n i n
i i

p H e
+ +

= 1,...,
2

n
i= and 

1

2

[ ,..., ]nV V V=  leads to an integer ZW 

factorization.  

 

Proof. Let 
1H I=  and 1i

H + defined by (7). Then, according to property P3, we 

have 

2

1

2

0

0 0 0

0

i i

i

i i

I K

H

L I

+

 
 

=  
  

                                     (18) 
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with
2 ,, .n i i

i iK L Z
−∈ Let ],,[],[

2
1

2

212
i

n
i

n

T

iiii eeHppP
++−

− == ],...,[
2

ni PPP = and

1

2

[ , , ].nV V V= … Then, the integer block ABS algorithm produce ,LPAVT =

where L is a lower triangular matrix.  Now, we have  

 

ZWALVVAPLVVVPALPAV
TTTTT T =⇒=⇒=⇒= −−                           (19) 

 

where, )( TVPP=  is an integer W-matrix with 1’s on diagonal and 0’s on off 

diagonal and TT
LVVZ

−=  is an integer Z-matrix.  

 

We observe that the first ( 1)
2

n
i− + th to ( )

2

n
i+ th rows of 1i

H + are equal 

zero and we delete the rows. In doing this we use of the matrix
i

E  obtaining 

from 
n

I  by deleting ( 1)
2

n
i th− +  until ( )

2

n
i th+  rows.  

 

Here, we present an algorithm for computing the integer ZW factorization. 

 

Algorithm 4. The integer ZW factorization. 

Step 1: Let 1H I= and 1.i =  

 

Step 2: Let 
2

1
2

[ , ] ,
n

i
i n

i
A a a

+− +
= i i i

S H A=  and  

 

2
1 1

2 2 2

[ , ] [ , ]
n

i

T

i n i n n
i i i

P p p H e e
+− + − + +

= =  

 

Step 3: Let 
2

1
2

[ , ]
n

i
i n

i
Q e e

+− +
=  and .T

i i iF Q S= Construct 
i

E  from 
i

I by 

deleting ( 1)
2

n
i th− +  until ( )

2

n
i th+  rows. Update 

i
H  by 

 

).)(( 1

1

T

iiiiii PFSHEH
−

+ −=  

 

Step 4: Let 1.i i= + If
2

n
i ≤ go to Step (2). 
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Step 5: Compute AP = Z, where 1[ ,..., ].
n

P p p=  Stop. 

 

Theorem 4.3. Let A be totally unimodular symmetric positive definite. 

Then, there exists a  XWW
T

  factorization for A, obtained by the ABS 

algorithm. 

 

Proof. Consider the assumptions of Theorem 4.2  and let ,
i i

V P= for 

1,..., .i s= Then, 

 

XWWLPVALAPV
TTT ==⇒= −− 1

                           (20) 

 

where X is an X-matrix. 

 

For computing the integer WZ (ZW) factorization by the Algorithm 3 (4), in 

the kth step we need to store the (2 1) 2i − ×  nonzero elements of submatrix 

of ,
i

P  the ( 2 2) 2n i− + × nonzero elements of submatrix of 
T

iS  and 4 for F, 

used to update .
i

H  Thus the storage required is the storage of A, 2n for ,
i

S

4 for F plus 
/ 2

2

1

2(2 1) / 2
n

i

i n
=

− =∑ for the matrix P. 

 

We observe that no computations are required for evaluating .
i

P  In the 

evaluation of 1i
H + no more than 2( 2 2)(2 2)n i i− + −  multiplications are 

required for computing ,
i i

H A  since unit submatrix 2 2n i
I − −  in ,

i
H 2 

multiplications and 4 divisions  are required for computing 
1,F −

no more 

than (2 1)i − multiplications and (2 1)i − divisions are required for computing 
1 ,iF P

−
no more than 2( 2 2)(2 1)n i i− + − multiplications are required for 

computing the nonzero elements of 
1 .T

i iS F P
−

 Then the computing cost 

follows by summing all terms with no more than 
3

2( ).
3

n
O n+  

 

5. A NUMERICAL ILLUSTRATION 

Here, we present a numerical illustration of the Algorithm 3 for 

computing an integer WZ factorization. 

 

Example: Considering the following matrix: 
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1 1 1 1 0 1 0 1

1 1 0 1 0 1 1 1

1 0 1 0 1 1 0 1

1 1 1 0 1 1 1 0
.

0 1 1 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 0 1 1 1 1

0 1 1 1 0 1 1 1

A

− − − − 
 

− − 
 − − − −
 
− − − − =
 − −
 

− − − 
 − −
 

− −  

 

 

Upon an application of Algorithms 3 for computing the integer WZ 

factorization we have,   

1 0 1 2 0 2 1 0

0 1 3 1 1 4 0 0

0 0 1 6 0 0 0 0

0 0 0 1 0 0 0 0
.

0 0 0 0 1 0 0 0

0 0 0 4 0 1 0 0

0 0 1 8 0 0 1 0

0 1 1 8 1 3 1 1

P

− 
 

− − 
 
 
 =
 
 
 
 − −
 

− − −  

 

 

which is a Z-matrix and 

 

 
1 0 0 0 0 0 0 1

1 0 0 0 0 0 1 1

1 1 3 0 0 4 0 1

1 1 4 21 2 1 0 0
.

0 0 1 2 1 2 1 1

1 1 4 0 0 6 1 1

1 1 0 0 0 0 1 1

0 0 0 0 0 0 0 1

W AP

− 
 

− 
 − − −
 
− − − − = =
 − −
 

− − − 
 
 

−  

 

 

which is a W-matrix. Therefore, 
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1 0 0 0 0 0 0 1 1 0 0 2 0 2 1 0

1 0 0 0 0 0 1 1 0 1 3 1 1 4 0 0

1 1 3 0 0 4 0 1 0 0 1 6 0 0 0 0

1 1 4 21 2 1 0 0 0 0 0 1 0 0 0 0
.

0 0 1 2 1 2 1 1 0 0 0 0 1 0 0 0

1 1 4 0 0 6 1 1 0 0 0 4 0 1 0 0

1 1 0 0 0 0 1 1 0 0 1 2 0 0 1 0

0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1

A

− − − −   
   

− −   
  − − − −
  
− − − −  =
  − −
  

− − − −  
  
  

− − − − −     











 

 

6. CONCLUSION 

We provided the conditions for the existence of the integer WZ and 

the integer ZW factorizations of a unimodular integer matrix. Then, we 

presented efficient algorithms in computation and storage for computing the 

integer WZ and ZW factorizations of an integer matrix and the integer XZZ
T  

and XWW
T  factorizations of a totally unimodular symmetric positives 

definite matrix using the integer ABS algorithm.  
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